EECS 16A Imaging 3

We will start at Berkeley Time!




Last time: Matrix-vector multiplication
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e Setup a masking matrix where each row is a mask
o Measured each pixel individually once

s =HI

e How did we reconstruct our image, once we had s?



Poll Time! (this is review)

What are the requirements of our masking matrix H?
(multiple choice)

H is invertible

H has linearly independent columns
H has a trivial nullspace
Determinant of H is O

Unique solutionto Hi=s

moowp

S5=Hi

Our system
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Questions from Imaging 2

Goal: Understand which measurements are good
measurements

v Can we always reconstruct our image? Need invertible H

? Are all invertible matrices equally good as scanning
matrices?

? What happens if we mess up a single scan?

? What if we use multiple pixel instead of single pixel scan?



Today: Multipixel scanning
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e Can we measure multiple pixels at a time? .
o Measurements are now linear combinations of pixels

¢ How can we reconstruct our scanned image?

o Can multipixel masks still be linearly independent, aka
invertible?



Why do we care?

e Improve image quality by redundancy:

o ldeally, one measurement is enough

o Redundancy: conducting more measurements

o Extract pixel value by averaging over multiple
measurements
m Good measurements » good average
m Occasional bad measurements » worsen the pixel

value but makes it tolerant of some errors



How do we do it?

e I|lluminate multiple pixels per scan:
o Each mask measures a linear combination of pixels instead
of a single pixel, i.e. has multiple 1's
o Increases signal level:
m Signal is data that we do want (ex: light intensity from
pixel illumination)
e Problems:
o Our measurements are noisy
m Noise is a random unwanted variation in our
measurement (ex: room light getting into box)
m Noise may be amplified through inverting a matrix!
e Goal: high signal, low noise » high signal-to-noise ratio (SNR)



What is noise?
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What is noise?

Measured values =
ideal vector + noise vector (w)
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How does noise affect our system?
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A more realistic system

e Sensor readings = H applied to image vector + noise vector

s =Hi+w

e \We can't reconstruct exact i, but we can estimate it

—

Be careful about the reconstruction error (noise term)
or else it could blow up !!




Eigenvectors! (and Eigenvalues)

First, regular matrix-vector multiplication
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Eigenvectors and Eigenvalues

What is an eigenvector?
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Eigenvectors and Eigenvalues

e Avandyvareonthesameline
o Thus vV is an eigenvector of A
e Another way of saying this:
o Avis a scalar multiple of v,
specifically, Av = 2v
o Thus V's eigenvalue is 2
o A has eigenpair (v, 2)

In general, v is an eigenvector of A
with eigenvalue A when

Av = \v
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Eigenvalues of Invertible Matrices

e All invertible matrices do not have a O eigenvalue.
Why?
e Consider some matrix that has a eigenvalue of O.

Av=0v =0

e We see A has a non-trivial nullspace and thus it's not
invertible
e We've proven what we wanted to prove!




Back to our scanning system with noise

e Sensor readings = H applied to image vector + noise vector

s =Hi+w

e \We can't reconstruct exact i, but we can estimate it

—

Be careful about the reconstruction error (noise term)
or else it could blow up !!




Eigenvalues for inverse matrices

e His an invertible NxN matrix «» trivial nullspace
o No zero eigenvalues
e Assume H has N linearly independent eigenvectors
o Hwv;, = A\v; for e =1...N
e The eigenvectors span R > where the noise vectors “live”!

e Eigenvalue-eigenvector definition: Proof:
_ | Huvu, = \;v;
H v, = —v, fori = 1...N T
)\i — H "Hv, = \;H "7
1
— H 'v; = —v;

i




How do eigenvalues affect noise?

The noise vector can be written as a linear combination of
eigenvectors:

—

W= V] + AU, + a4, V,

Including effect of -1
o H Y a,v{ + a,v, + - a,v,)

Rewritten with eigenvalues:

1 1 1
H'w /11 —a,v; + 7, — U, + o — U,



Linking it all together
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e Remember: want small noise term for high signal-to-noise

ratio
e The noise is directly related to the eigenvalues



Poll Time!

e Do we want small or large eigenvalues for the H matrix in
order to get a good image?
A. Large

B. The magnitude doesn’t matter
C. Small

e Which of the following equations correctly model our
imaging system? (multiple choice)
sideal =H.l

sreal = Sideal tw=Ha+w
S
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Possible scanning matrix: Random

Mask 0: 272.0 Illuminated Pixels Mask 1: 281.0 llluminated Pixels Mask 3: 289.0 Illuminated Pixels
et = : pets : cxdes 0 i

e llluminate ~300 pixels per scan
o Usually invertible
o But what are its eigenvalues?

(V)




A more systematic scanning matrix

e Constructed to have large

Hadamard matrix!

eigenvalues
o Just what we need!

Mystery Matrix
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Multipixel Scanning Use Cases

e Not the “superior technology” — as any practice, it has its
advantages and disadvantages:

o Multipixel scan is useful if we cared about getting close
to each pixel value, prioritizing getting decent results for
each pixel

o Single-pixel scan allows to get really good measurements
for some pixels while other pixels will be lost entirely



Example: Horsetail Falls

Do you see
the missing
pixel?




Example: Horsetail Falls Comparison

Single-pixel: many “perfect” pixels but some Multipixel: fewer “perfect” pixels (creating
are entirely missing blurriness) but information-preserving




Multipixel Scanning Expectations

e Note: when shining light at multiple portions of an image,
our light will easily bleed to the pixels around one region
o Therefore, we may not get better results
e Today’s goal:
o Show that it's possible to get results using multipixel
scanning
o Use case of multipixel scanning at the end of the lab



Workflow and Debugging

e READ CAREFULLY
e Circuit:
o Resistor is different
o Check light sensor orientation
o Red jumper for +
o Black jumper for GND
e Projector:
o BE CAREFUL WITH PORTS (DC, HDMI)
o brightness O, contrast 100
o may restart in the middle of scan
Image: not-too-detailed
Cover box with jacket for dark conditions
Project masks onto image

Reconstruct image: H''s

=i
real est



