EECS 16A Imaging 3

We will start at Berkeley Time!

Last time: Matrix-vector multiplication

Masking Matrix H Unknown,

vectorized image, \vec{l}

Recorded Sensor readings, \vec{S}

s_n

s₁

 $S₂$

s₃

Last time: Single-pixel scanning

Setup a masking matrix where each row is a mask ○ Measured each pixel individually once

$$
\vec{s} = H\vec{\iota}
$$

How did we reconstruct our image, once we had s?

Poll Time! (this is review)

What are the requirements of our masking matrix H? (multiple choice)

- **A. H is invertible**
- **B. H has linearly independent columns**
- **C. H has a trivial nullspace**
- **D. Determinant of H is 0**
- **E. Unique solution to Hi = s**

Our system

Poll Time! (this is review)

What are the requirements of our masking matrix H? (multiple choice)

- **A. H is invertible**
- **B. H has linearly independent columns**
- **C. H has a trivial nullspace**
- **D. Determinant of H is 0**
- **E. Unique solution to Hi = s**

Our system

Questions from Imaging 2

Goal: Understand which measurements are good measurements

- ✓ Can we always reconstruct our image? **Need invertible H**
- ? Are all invertible matrices equally good as scanning matrices?
- ? What happens if we mess up a single scan?
- ? What if we use multiple pixel instead of single pixel scan?

Today: Multipixel scanning

● Can we measure multiple pixels at a time? ○ Measurements are now linear combinations of pixels

● How can we reconstruct our scanned image? ○ Can multipixel masks still be linearly independent, aka invertible?

Why do we care?

- Improve image quality by **redundancy**:
	- Ideally, one measurement is enough
	- Redundancy: conducting more measurements
	- Extract pixel value by averaging over multiple measurements
		- Good measurements → good average
		- Occasional bad measurements → worsen the pixel value but makes it tolerant of some errors

How do we do it?

- Illuminate multiple pixels per scan:
	- Each mask measures a linear combination of pixels instead of a single pixel, i.e. has multiple 1's
	- Increases signal level:
		- Signal is data that we do want (ex: light intensity from pixel illumination)
- Problems:
	- Our measurements are noisy
		- **Noise** is a random unwanted variation in our measurement (ex: room light getting into box)
		- Noise may be amplified through inverting a matrix!
- **Goal: high signal, low noise → high signal-to-noise ratio (SNR)**

What is noise?

What is noise?

How does noise affect our system?

Masking Matrix H Unknown,

vectorized image, \vec{r} Random noise vector, \vec{w}

Recorded Sensor readings, \vec{S}

A more realistic system

Sensor readings = H applied to image vector + noise vector

$$
\vec{s} = H\vec{i} + \vec{w}
$$

● We can't reconstruct exact **i**, but we can estimate it

$$
\vec{i}_{est} = H^{-1} \vec{s} = \vec{i} + \boxed{H^{-1} \vec{w}}
$$

Be careful about the reconstruction error (noise term) or else it could blow up !!

Eigenvectors! (and Eigenvalues)

First, regular matrix-vector multiplication

 $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $u=\begin{bmatrix}1\\0\end{bmatrix}$ $Au = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Eigenvectors and Eigenvalues

What is an eigenvector?

Eigenvectors and Eigenvalues

- Δv and v are on the same line ○ Thus v is an eigenvector of A
- Another way of saying this:
	- Av is a scalar multiple of v, specifically, Av = 2v
	- o Thus v's eigenvalue is 2
	- A has eigenpair (v, 2)

In general, v is an eigenvector of A with eigenvalue λ when

$$
Av=\lambda v
$$

Eigenvalues of Invertible Matrices

● All invertible matrices do not have a 0 eigenvalue.

Why?

● Consider some matrix that has a eigenvalue of 0.

$$
Av=0v=0
$$

- We see A has a non-trivial nullspace and thus it's not invertible
- We've proven what we wanted to prove!

Back to our scanning system with noise

Sensor readings = H applied to image vector + noise vector

$$
\vec{s} = H\vec{i} + \vec{w}
$$

● We can't reconstruct exact **i**, but we can estimate it

$$
\vec{i}_{est} = H^{-1} \vec{s} = \vec{i} + \boxed{H^{-1} \vec{w}}
$$

Be careful about the reconstruction error (noise term) or else it could blow up !!

Eigenvalues for inverse matrices

- H is an invertible NxN matrix ←→ trivial nullspace ○ No zero eigenvalues
- Assume H has N linearly independent eigenvectors

 \circ Hv_i = $\lambda_i v_i$ for $i = 1...N$

- The eigenvectors span $\mathbb{R}^N \to \mathbb{R}^N$ + where the noise vectors "live"!
- Eigenvalue-eigenvector definition: Proof:

$$
H^{-1}v_i = \frac{1}{\lambda_i}v_i
$$
 for $i = 1...N$

$$
H\vec{v_i} = \lambda_i \vec{v_i}
$$

\n
$$
\implies H^{-1}H\vec{v_i} = \lambda_i H^{-1}\vec{v_i}
$$

\n
$$
\implies H^{-1}\vec{v_i} = \frac{1}{\lambda_i}\vec{v_i}
$$

How do eigenvalues affect noise?

The noise vector can be written as a linear combination of eigenvectors:

$$
\vec{\omega} = \alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \cdots \alpha_n \vec{v_n}
$$

Including effect of H^{-1} $H^{-1}\vec{\omega} = H^{-1}(\alpha_1\vec{v_1} + \alpha_2\vec{v_2} + \cdots \alpha_n\vec{v_n})$

Rewritten with eigenvalues:

$$
H^{-1}\vec{\omega} = \frac{1}{\lambda_1}\alpha_1\vec{v_1} + \frac{1}{\lambda_2}\alpha_2\vec{v_2} + \dots + \frac{1}{\lambda_n}\alpha_n\vec{v_n}
$$

Linking it all together

$$
\vec{i}_{est} = H^{-1}\vec{s} = \vec{i} + \boxed{H^{-1}\vec{w}}
$$
\n
$$
\boxed{H^{-1}\vec{\omega}} = \frac{1}{\lambda_1}\alpha_1\overrightarrow{v_1} + \frac{1}{\lambda_2}\alpha_2\overrightarrow{v_2} + \dots + \frac{1}{\lambda_n}\alpha_n\overrightarrow{v_n}
$$

- Remember: want small noise term for high signal-to-noise ratio
- The noise is directly related to the eigenvalues

Poll Time!

- **● Do we want small or large eigenvalues for the H matrix in order to get a good image?**
	- **A. Large**
	- **B. The magnitude doesn't matter**
	- **C. Small**
- **● Which of the following equations correctly model our imaging system? (multiple choice)**

A.
$$
S_{ideal} = H.i
$$
\nB. $S_{real} = S_{ideal} + W = H.i + W$ \nC. $S_{real} = S_{ideal} + W = H.i + H.W$ \nD. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + H^{-1}.W$ \nE. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + W$

Poll Time!

- **● Do we want small or large eigenvalues for the H matrix in order to get a good image?**
	- **A. Large**
	- **B. The magnitude doesn't matter**
	- **C. Small**
- **● Which of the following equations correctly model our imaging system? (multiple choice)**

A.
$$
S_{ideal} = H.i
$$
\nB. $S_{real} = S_{ideal} + W = H.i + W$ \nC. $S_{real} = S_{ideal} + W = H.i + H.W$ \nD. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + H^{-1}.W$ \nE. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + W$

Possible scanning matrix: Random

ヿ(ツ) 厂

- Illuminate ~300 pixels per scan
	- *Usually* invertible
	- But what are its eigenvalues?

A more systematic scanning matrix

Hadamard matrix!

- Constructed to have large eigenvalues
	- Just what we need!

Multipixel Scanning Use Cases

- Not the "superior technology" as any practice, it has its advantages and disadvantages:
	- Multipixel scan is useful if we cared about getting *close* to each pixel value, prioritizing getting decent results for each pixel
	- Single-pixel scan allows to get really good measurements for some pixels while other pixels will be lost entirely

Example: Horsetail Falls

Do you see the missing pixel?

Example: Horsetail Falls Comparison

Single-pixel: many "perfect" pixels but some are entirely missing

Multipixel: fewer "perfect" pixels (creating blurriness) but information-preserving

Multipixel Scanning Expectations

- Note: when shining light at multiple portions of an image, our light will easily bleed to the pixels around one region ○ *Therefore, we may not get better results*
- **● Today's goal:**
	- Show that it's possible to get results using multipixel scanning
	- **○ Use case of multipixel scanning at the end of the lab**

Workflow and Debugging

- READ CAREFULLY
- Circuit:
	- Resistor is different
	- Check light sensor orientation
	- **Red** jumper for **+**
	- **Black** jumper for **GND**
- Projector:
	- **○ BE CAREFUL WITH PORTS (DC, HDMI)**
	- brightness 0, contrast 100
	- may restart in the middle of scan
- Image: not-too-detailed
- Cover box with jacket for dark conditions
- Project masks onto image
- Reconstruct image: H-1**s real** = **iest**