EECS 16A Imaging 3

We will start at Berkeley Time!

Last time: Matrix-vector multiplication

									-		
1	0	0	0	0	0	0	0			i,	
0	1	0	0	0	0	0	0			i ₂	
0	0	1	0	0	0	0	0			i ₃	
0	0	0	1	0	0	0	0				_
0	0	0	0	1	0	0	0				_
0	0	0	0	0	1	0	0				
0	0	0	0	0	0	1	0				
										i _n	

Masking Matrix H

Unknown, vectorized image, \vec{l}

Recorded Sensor readings, \vec{S}

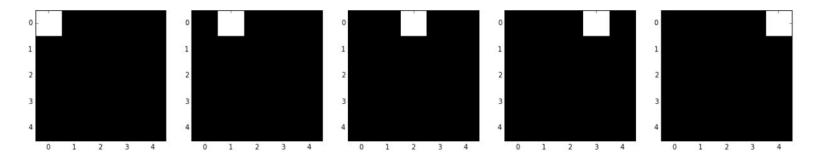
s_n

S₁

S₂

 \mathbf{S}_3

Last time: Single-pixel scanning



Setup a masking matrix where each row is a mask
 Measured each pixel individually once

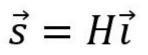
$$\vec{s} = H\vec{\iota}$$

• How did we reconstruct our image, once we had s?

Poll Time! (this is review)

What are the requirements of our masking matrix H? (multiple choice)

- A. H is invertible
- **B.** H has linearly independent columns
- C. H has a trivial nullspace
- D. Determinant of H is 0
- E. Unique solution to Hi = s

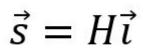


Our system

Poll Time! (this is review)

What are the requirements of our masking matrix H? (multiple choice)

- A. H is invertible
- **B.** H has linearly independent columns
- C. H has a trivial nullspace
- D. Determinant of H is 0
- E. Unique solution to Hi = s



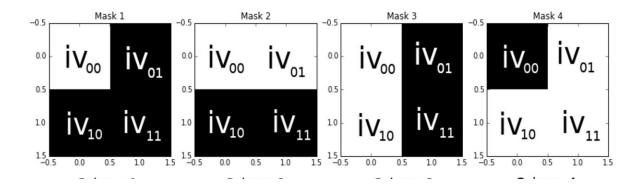
Our system

Questions from Imaging 2

Goal: Understand which measurements are good measurements

- ✓ Can we always reconstruct our image? **Need invertible H**
- ? Are all invertible matrices equally good as scanning matrices?
- ? What happens if we mess up a single scan?
- ? What if we use multiple pixel instead of single pixel scan?

Today: Multipixel scanning



Can we measure multiple pixels at a time?
 Measurements are now linear combinations of pixels

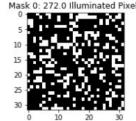
How can we reconstruct our scanned image?
 Can multipixel masks still be linearly independent, aka invertible?

Why do we care?

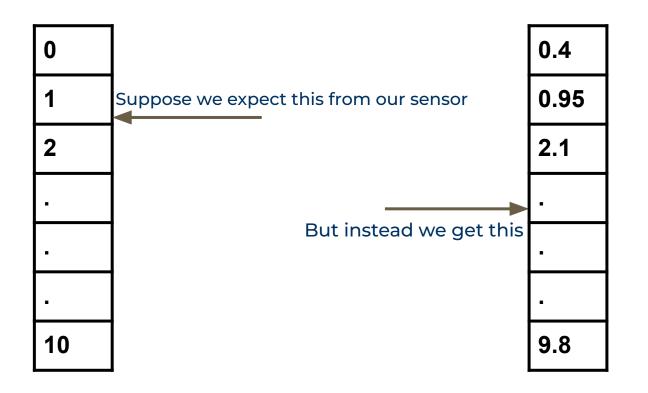
- Improve image quality by **redundancy**:
 - Ideally, one measurement is enough
 - Redundancy: conducting more measurements
 - Extract pixel value by averaging over multiple measurements
 - Good measurements → good average
 - Occasional bad measurements → worsen the pixel value but makes it tolerant of some errors

How do we do it?

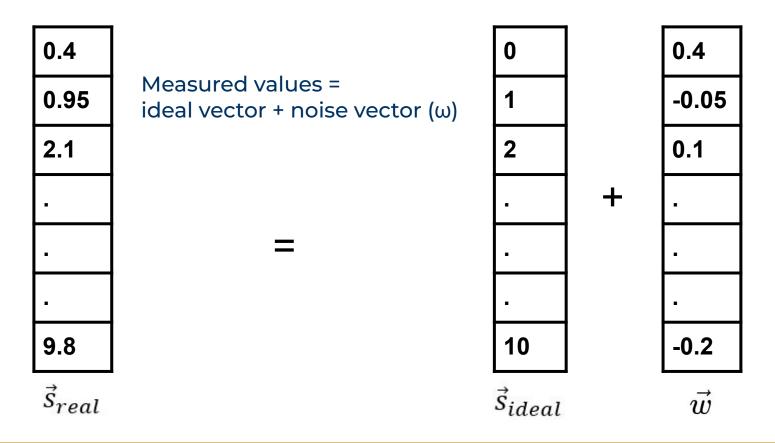
- Illuminate multiple pixels per scan:
 - Each mask measures a linear combination of pixels instead of a single pixel, i.e. has multiple 1's
 - Increases signal level:
 - Signal is data that we do want (ex: light intensity from pixel illumination)
- Problems:
 - Our measurements are noisy
 - Noise is a random unwanted variation in our measurement (ex: room light getting into box)
 - Noise may be amplified through inverting a matrix!
- **Goal: high signal, low noise** → high signal-to-noise ratio (SNR)



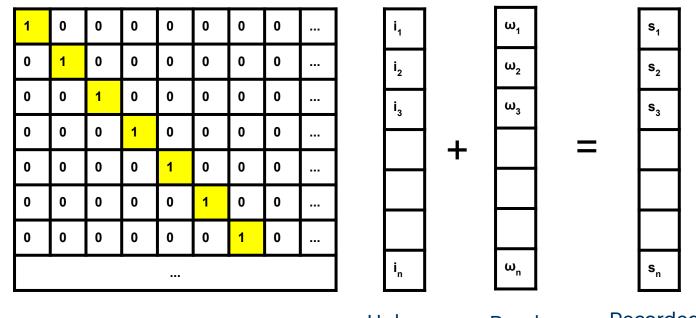
What is noise?



What is noise?



How does noise affect our system?



Masking Matrix H

Unknown, Random vectorized noise image, \vec{l} vector, \vec{w}

Recorded Sensor readings, \vec{S}

A more realistic system

• Sensor readings = H applied to image vector + noise vector

$$ec{s}=Hec{i}+ec{w}$$

• We can't reconstruct exact **i**, but we can estimate it

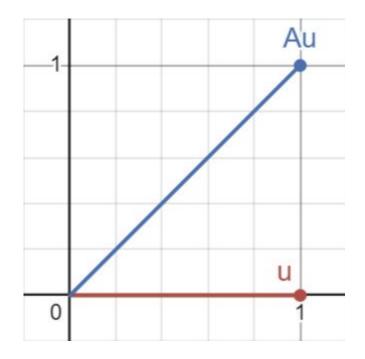
$$ec{i}_{est} = H^{-1}ec{s} = ec{i} + H^{-1}ec{w}$$

Be careful about the <u>reconstruction error</u> (noise term) or else it could blow up !!

Eigenvectors! (and Eigenvalues)

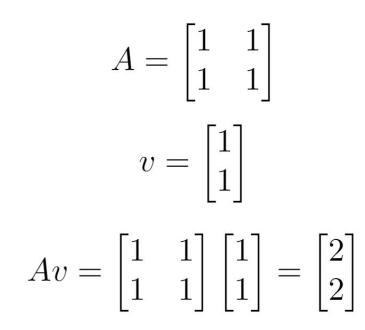
First, regular matrix-vector multiplication

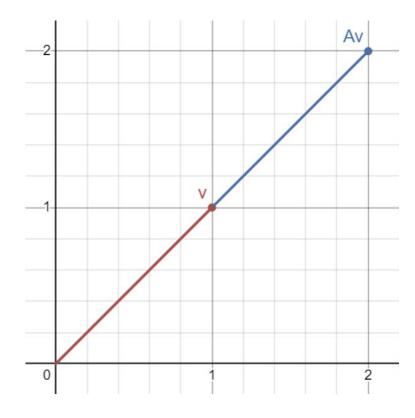
 $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $Au = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$



Eigenvectors and Eigenvalues

What is an eigenvector?



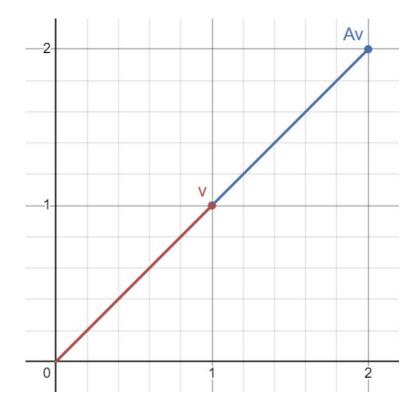


Eigenvectors and Eigenvalues

- Av and v are on the same line
 Thus v is an eigenvector of A
- Another way of saying this:
 - Av is a scalar multiple of v, specifically, Av = 2v
 - Thus v's eigenvalue is 2
 - A has eigen<u>pair</u> (v, 2)

In general, v is an eigenvector of A with eigenvalue λ when

$$Av = \lambda v$$



Eigenvalues of Invertible Matrices

• All invertible matrices do not have a 0 eigenvalue.

Why?

• Consider some matrix that has a eigenvalue of 0.

$$Av = 0v = 0$$

- We see A has a non-trivial nullspace and thus it's not invertible
- We've proven what we wanted to prove!

Back to our scanning system with noise

• Sensor readings = H applied to image vector + noise vector

$$ec{s}=Hec{i}+ec{w}$$

• We can't reconstruct exact **i**, but we can estimate it

$$ec{i}_{est} = H^{-1}ec{s} = ec{i} + H^{-1}ec{w}$$

Be careful about the <u>reconstruction error</u> (noise term) or else it could blow up !!

Eigenvalues for inverse matrices

- H is an invertible NxN matrix ←→ trivial nullspace
 No zero eigenvalues
- Assume H has N linearly independent eigenvectors

• $Hv_i = \lambda_i v_i$ for i = 1...N

- The eigenvectors span $\mathbb{R}^N \rightarrow$ where the noise vectors "live"!
- Eigenvalue-eigenvector definition:

$$\mathbf{H}^{-1}v_i = \frac{1}{\lambda_i}v_i \text{ for } i = 1...\mathbf{N}$$

$$H\vec{v_i} = \lambda_i \vec{v_i}$$
$$\implies H^{-1}H\vec{v_i} = \lambda_i H^{-1}\vec{v_i}$$
$$\implies H^{-1}\vec{v_i} = \frac{1}{\lambda_i}\vec{v_i}$$

Proof:

How do eigenvalues affect noise?

The noise vector can be written as a linear combination of eigenvectors:

$$\vec{\omega} = \alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \cdots + \alpha_n \overrightarrow{v_n}$$

Including effect of H^{-1} $H^{-1}\vec{\omega} = H^{-1}(\alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \cdots + \alpha_n \vec{v_n})$

Rewritten with eigenvalues:

$$H^{-1}\vec{\omega} = \frac{1}{\lambda_1}\alpha_1 \overrightarrow{v_1} + \frac{1}{\lambda_2}\alpha_2 \overrightarrow{v_2} + \cdots + \frac{1}{\lambda_n}\alpha_n \overrightarrow{v_n}$$

Linking it all together

$$\vec{i}_{est} = H^{-1}\vec{s} = \vec{i} + H^{-1}\vec{w}$$
$$H^{-1}\vec{\omega} = \frac{1}{\lambda_1}\alpha_1\vec{v_1} + \frac{1}{\lambda_2}\alpha_2\vec{v_2} + \cdots + \frac{1}{\lambda_n}\alpha_n\vec{v_n}$$

- Remember: want small noise term for high signal-to-noise ratio
- The noise is directly related to the eigenvalues

Poll Time!

- Do we want small or large eigenvalues for the H matrix in order to get a good image?
 - A. Large
 - B. The magnitude doesn't matter
 - C. Small
- Which of the following equations correctly model our imaging system? (multiple choice)

A.
$$s_{ideal} = H.i$$

B. $s_{real} = s_{ideal} + w = H.i + w$
C. $s_{real} = s_{ideal} + w = H.i + H.w$
D. $i_{est} = H^{-1}.s_{real} = H^{-1}.s_{ideal} + H^{-1}.w$
E. $i_{est} = H^{-1}.s_{real} = H^{-1}.s_{ideal} + w$

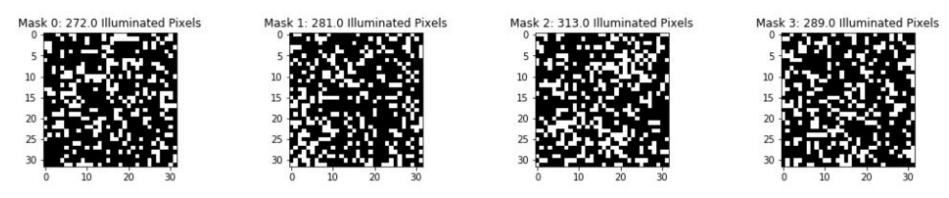
Poll Time!

- Do we want small or large eigenvalues for the H matrix in order to get a good image?
 - A. Large
 - B. The magnitude doesn't matter
 - C. Small
- Which of the following equations correctly model our imaging system? (multiple choice)

A.
$$S_{ideal} = H.i$$

B. $S_{real} = S_{ideal} + W = H.i + W$
C. $S_{real} = S_{ideal} + W = H.i + H.W$
D. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + H^{-1}.W$
E. $i_{est} = H^{-1}.S_{real} = H^{-1}.S_{ideal} + W$

Possible scanning matrix: Random



- Illuminate ~300 pixels per scan
 - Usually invertible
 - But what are its eigenvalues?

A more systematic scanning matrix

• Hadamard matrix!

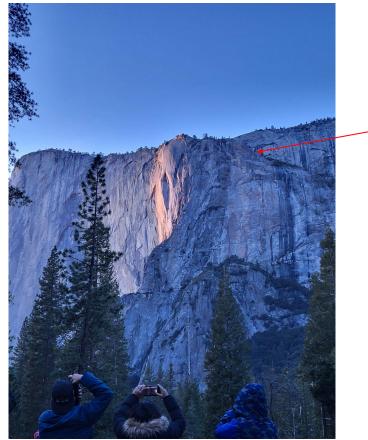
- Constructed to have large eigenvalues
 - o Just what we need!



Multipixel Scanning Use Cases

- Not the "superior technology" as any practice, it has its advantages and disadvantages:
 - Multipixel scan is useful if we cared about getting *close* to each pixel value, prioritizing getting decent results for each pixel
 - Single-pixel scan allows to get really good measurements for some pixels while other pixels will be lost entirely

Example: Horsetail Falls



Do you see the missing pixel?

Example: Horsetail Falls Comparison

Single-pixel: many "perfect" pixels but some are entirely missing

Multipixel: fewer "perfect" pixels (creating blurriness) but information-preserving

Multipixel Scanning Expectations

- Note: when shining light at multiple portions of an image, our light will easily bleed to the pixels around one region
 Therefore, we may not get better results
- Today's goal:
 - Show that it's possible to get results using multipixel scanning
 - Use case of multipixel scanning at the end of the lab

Workflow and Debugging

- READ CAREFULLY
- Circuit:
 - Resistor is different
 - Check light sensor orientation
 - Red jumper for +
 - Black jumper for GND
- Projector:
 - BE CAREFUL WITH PORTS (DC, HDMI)
 - brightness 0, contrast 100
 - may restart in the middle of scan
- Image: not-too-detailed
- Cover box with jacket for dark conditions
- Project masks onto image
- Reconstruct image: H⁻¹s_{real} = i_{est}