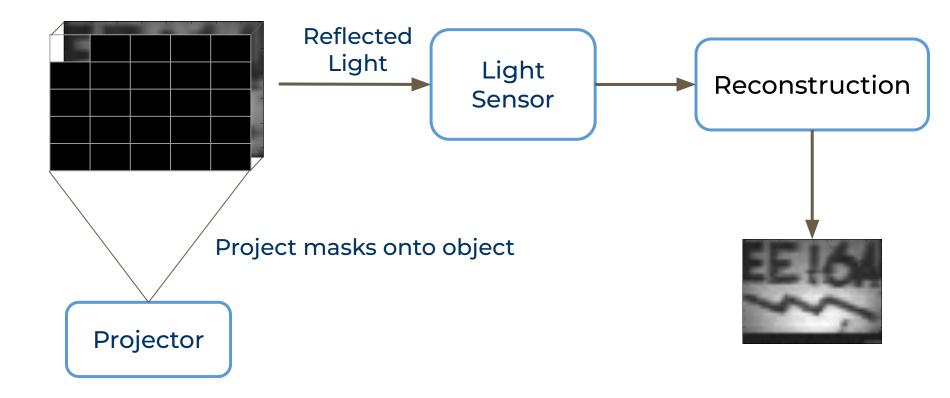
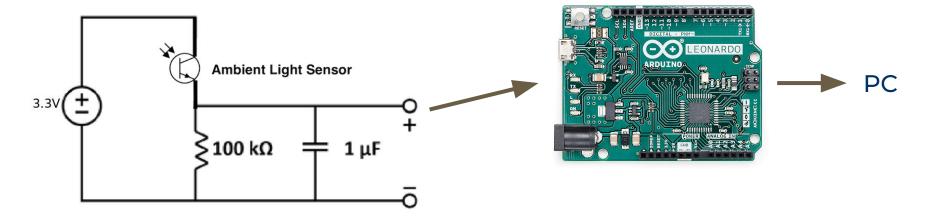

EECS 16A Imaging 2

We will start at Berkeley Time!

Working In Pairs

- Complete the lab in PAIRS, do ONE setup and notebook per groups.
- Speak to the staff if you do not have a lab partner.


Semester Outline


Agenda

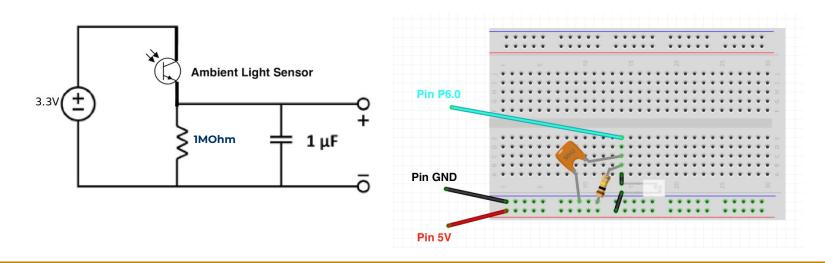
- Images as matrices and vectors
- Pixel-by-pixel scanning
- Reconstructing scans as images

Our Imaging System

Light Sensor?

- This is the circuit that senses our reflected light
- For our purposes, it's a black box that turns light levels into voltage values, a signal that computers can work with

Why Imaging?


- Module Idea: use linear algebra techniques to capture real world images with limited sensors.
- Today:
 - Become familiar with our imaging setup
 - Use single-pixel scanning to capture image

Last Week: Imaging 1

Built our very first circuit!
 What did this circuit do?

Circuit Diagram

Breadboard Diagram

Today's Lab: Single Pixel Scanning

- Circuit from last week measures **light** intensity
- Simulated projector illuminates image in a controlled way
- Python programming to reconstruct image

Why?

• Imaging 1:

- Finding a link between physical quantities and voltage is powerful
- If you can digitize it, you can do anything (IOT devices, internet, code, processing)

Imaging 2:

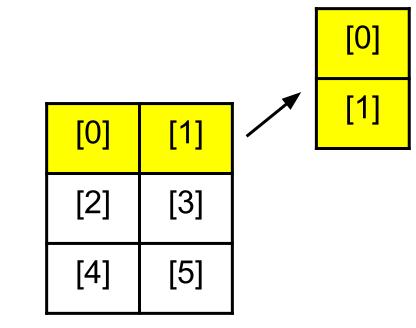
- How do we get measurements and what makes them good?
- How do we get to an image?

Illuminating the Big Picture

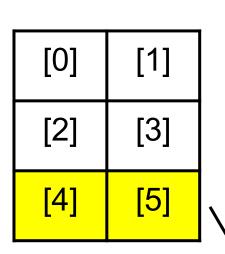
• Linear dependence

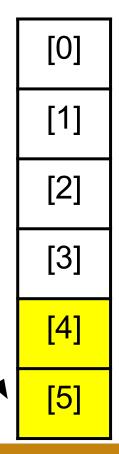
- When can you recover your image?
- Does it matter what mask matrix you pick?
- Does it matter how you cover the pixels?

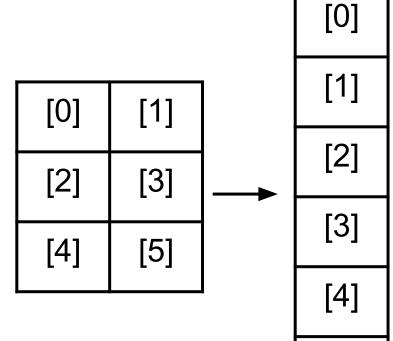
• Invertibility

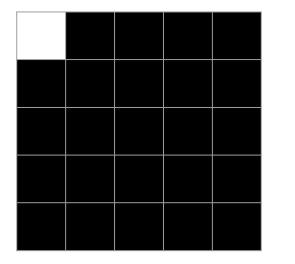

- When can you solve Ax = b?
- How does this relate to our system?
- How does this affect the way we pick our masking matrix?

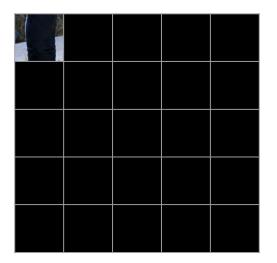
- What are the unknowns in our system?
 The Image !
- We can do a lot of interesting processing on vectors, but we need to convert the image into one first
 - How can we do this?


[0]	[1]
[2]	[3]
[4]	[5]

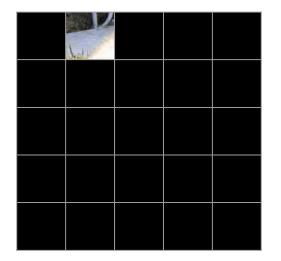




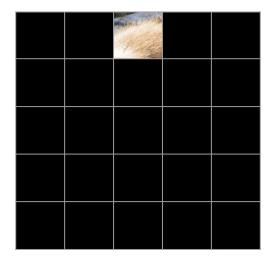




[5]



Masked image


Image

Masked image

Image

Masked image

Image

Poll Time!

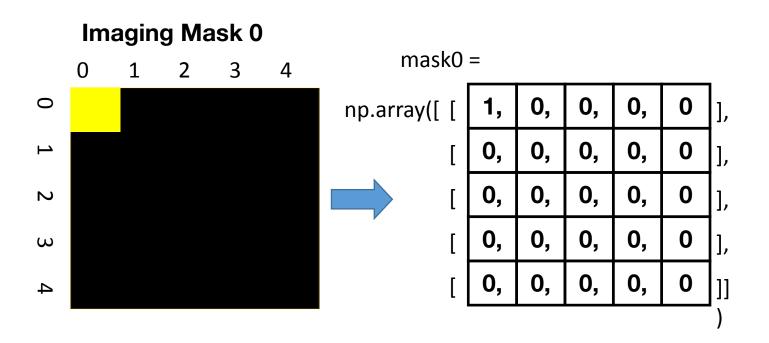
What would you expect the dimensions of a vector representing a 2x3 image to be?

- A. 2x3
- B. 3x2
- C. 6x1
- D. 5x1

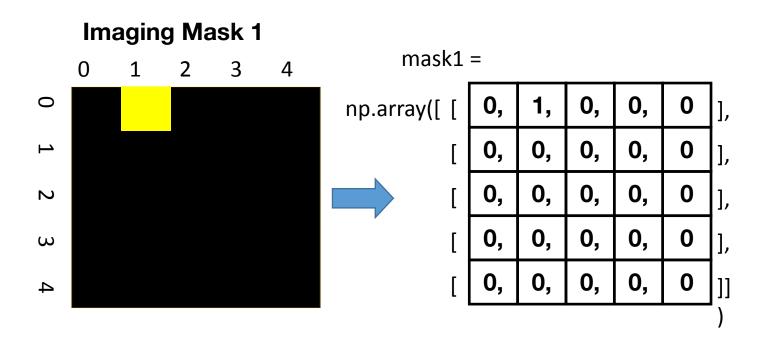
To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do we need to do?

- A. 4
- B. 8
- C. 16
- D. 32

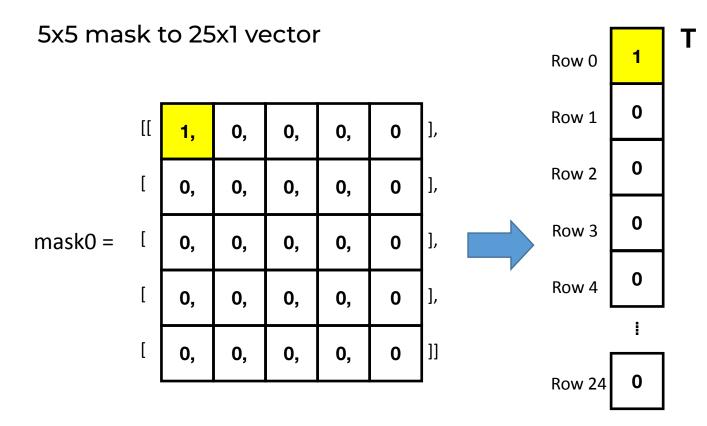
Poll Time!

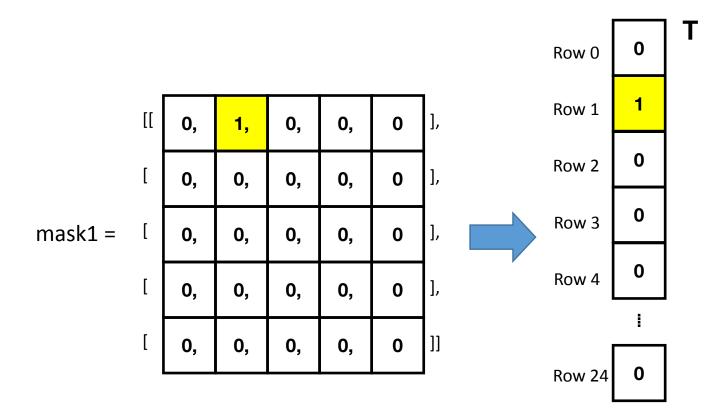

What would you expect the dimensions of a vector representing a 2x3 image to be?

- A. 2x3
- B. 3x2
- C. 6x1
- D. 5x1

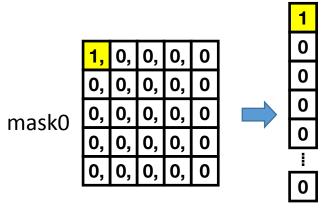

To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do we need to do?

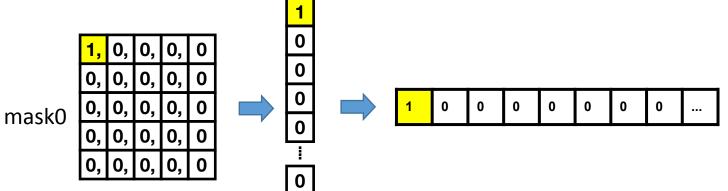
- A. 4
- B. 8
- C. 16
- D. 32

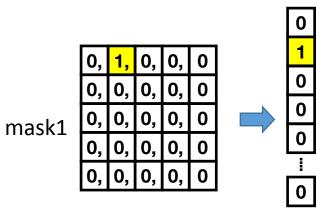

Representing our Masks in Python


Representing our Masks in Python

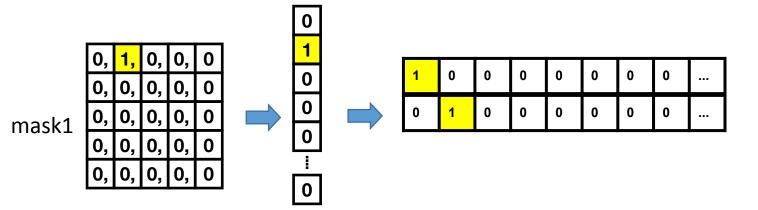
Turning the Masks Into Vectors




Turning the Masks Into Vectors


1,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0
0,	0,	0,	0,	0

mask0



	0,	1,	0,	0,	0
	0,	0,	0,	0,	0
mask1				0,	
maski	0,	0,	0,	0,	0
	0,	0,	0,	0,	0

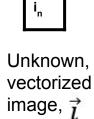
1 0 0 0 0 0 0	0
---------------	---

1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	

1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	

Generating the Masking Matrix from the Masks

↓ each column represents a pixel


H =	1	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	0	0	
	0	0	0	0	1	0	0	0	
	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	1	0	

← each row is a mask

Measuring a Pixel is Matrix-Vector Multiplication

1	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0		
0	0	1	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	0	0	1	0	0	0		
0	0	0	0	0	1	0	0		
0	0	0	0	0	0	1	0		

Masking Matrix H

i,

i₂

İ3

Recorded Sensor readings, \vec{S}

' s_n

S₁

S₂

S3

Measuring a Pixel is Matrix-Vector Multiplication

 $\vec{s} = H\vec{\iota}$

- We know H and we have the sensor readings, how do we get the image?
- How do we solve this?
- When can we solve this?
 Conditions on H

Poll Time! $\vec{s} = H\vec{i}$

Select all of the following that must be true for the image vector i to be recoverable from the sensor vector s.

- 1. H must be invertible
- 2. H must have linearly independent rows
- 3. H must be a square matrix
- 4. H must be the identity matrix

Poll Time!

Select all of the following that must be true for the image vector i to be recoverable from the sensor vector s.

- 1. H must be invertible
- 2. H must have linearly independent rows
- 3. H must be a square matrix
- 4. H must be the identity matrix

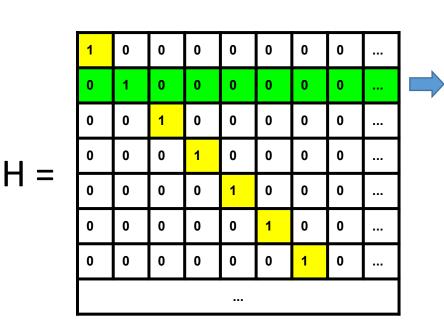
Poll Time!

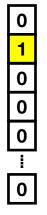
Select all of the following that describe the relationship between H (the masking matrix), s (the sensor vector), and i (the image vector)?

- 1. Hs = i
- 2. Hi = s
- 3. $H^{-1}i = s$
- 4. $H^{-1}s = i$
- 5. i * s = H

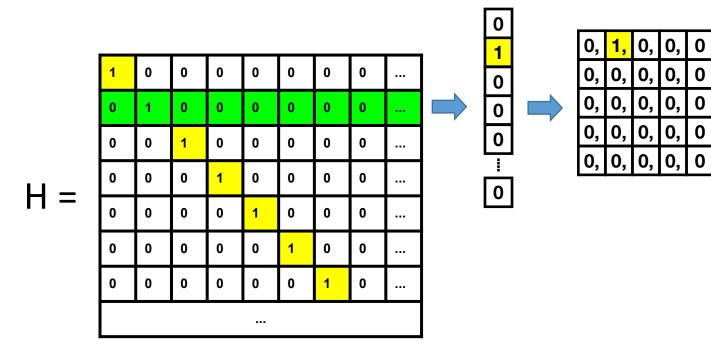
Poll Time!

Select all of the following that describe the relationship between H (the masking matrix), s (the sensor vector), and i (the image vector)?

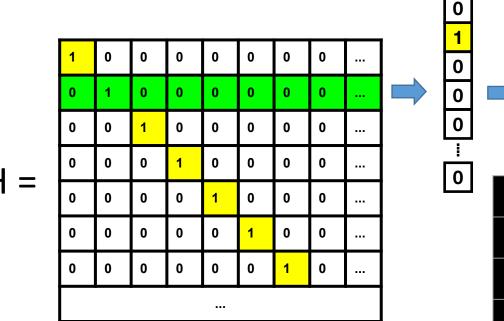

- 1. Hs = i
- 2. Hi = s
- 3. $H^{-1}i = s$
- 4. $H^{-1}s = i$
- 5. i * s = H

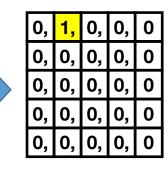

How Scanning Works: iPython

1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	1	0	0	0	
0	0	0	0	0	1	0	0	
0	0	0	0	0	0	1	0	


H =

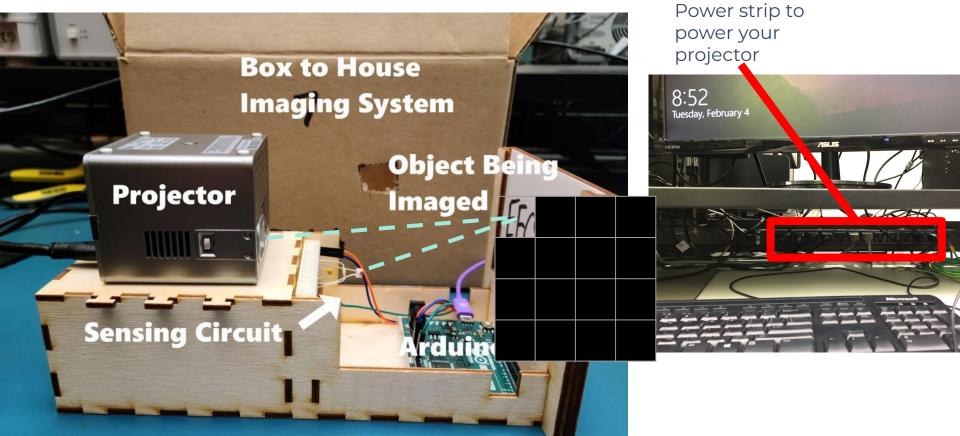
How Scanning Works: iPython



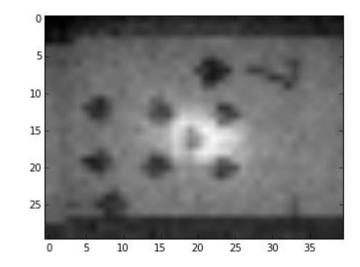


How Scanning Works: iPython

How Scanning Works in Python



What Makes a Mask Good?


- Linearly independent columns -> Invertible
 - Can't get a solution without this
 - There is a unique solution
- What would be a bad mask?
- Food for thought: Are all invertible matrices equally as good?
 - Find out in Imaging 3 next week

Setup

Sample Images

Setup

- 1. Draw a "simple" image
- 2. Use Python to project masks onto it in a dark environment
- 3. Measure ambient light sensor reading to get s
- 4. Multiply by H inverse to find i (= H⁻¹s)

Color Imaging!

- The masks we have been using so far have been black and white (1s and 0s). Thus, B&W images
- What if we use color masks instead?
- Make use of RGB (red green blue) channels and reconstruct three different scans
- Same system as before: $\vec{s} = H\vec{\iota}$
- Only difference is one "system" for each color
- With a bit of math/signal processing, we can get color images!

Tips for a Good Image

- READ CLOSELY. There are many small directions that help you get a good setup
- Focus projector using dial on the side
- Close the box firmly & scan under dark conditions
- Make sure the cables are plugged in, and do not disturb them during the scanning process

Debugging

- 1. Make sure wires/resistors/light sensor are not loose
- 2. Light sensor orientation: short leg goes into +ve
- 3. Čheck COM Port
- Reupload code to Arduino after making any change in circuit
 Check Baud Rate in Serial Monitor
- 5. Check Baud Rate in Serial Monitor (115200)
- 6. Projector might randomly restart in the middle of the lab. Make sure brightness 0 contrast 100.
- 7. If you see a very bright corner in the scan, move the light sensor away from the projector