
EECS 16A Imaging 2
We will start at Berkeley Time!



Working In Pairs

● Complete the lab in PAIRS, do ONE setup and 
notebook per groups.

● Speak to the staff if you do not have a lab partner.



Semester Outline

Shazam Imaging Acoustic 
Positioning

Voice
Recognition



Agenda

● Images as matrices and vectors
● Pixel-by-pixel scanning
● Reconstructing scans as images



Our Imaging System

Light 
Sensor Reconstruction

Reflected
Light

Projector

Project masks onto object



Light Sensor?

● This is the circuit that senses our reflected light
● For our purposes, it’s a black box that turns light levels into 

voltage values, a signal that computers can work with

PC



Why Imaging?

● Module Idea: use linear algebra techniques to capture real 
world images with limited sensors.

● Today:
○ Become familiar with our imaging setup
○ Use single-pixel scanning to capture image



Last Week: Imaging 1

● Built our very first circuit!
○ What did this circuit do?

Circuit Diagram Breadboard Diagram

1MOhm



Today’s Lab: Single Pixel Scanning

● Circuit from last week measures light intensity
● Simulated projector illuminates image in a 

controlled way
● Python programming to reconstruct image



Why?

● Imaging 1: 
○ Finding a link between physical quantities and voltage is 

powerful
○ If you can digitize it, you can do anything (IOT devices, 

internet, code, processing)
● Imaging 2:

○ How do we get measurements and what makes them 
good?

○ How do we get to an image?



Illuminating the Big Picture

● Linear dependence
○ When can you recover your image?
○ Does it matter what mask matrix you pick?
○ Does it matter how you cover the pixels?

● Invertibility
○ When can you solve Ax = b?
○ How does this relate to our system?
○ How does this affect the way we pick our masking 

matrix?



Images, Matrices, Vectors
● What are the unknowns in our system?

○ The Image !
● We can do a lot of interesting processing on 

vectors, but we need to convert the image 
into one first
○ How can we do this?



Images, Matrices, Vectors

[0] [1]

[2] [3]

[4] [5]



Images, Matrices, Vectors

[0] [1]

[2] [3]

[4] [5]

[0]

[1]



Images, Matrices, Vectors

[0] [1]

[2] [3]

[4] [5]

[0]

[1]

[2]

[3]



Images, Matrices, Vectors

[0] [1]

[2] [3]

[4] [5]

[0]

[1]

[2]

[3]

[4]

[5]



Images, Matrices, Vectors

[0]

[1]

[2]

[3]

[4]

[5]

[0] [1]

[2] [3]

[4] [5]



Pixel-by-Pixel Scan of an Image



Pixel-by-Pixel Scan of an Image



Pixel-by-Pixel Scan of an Image

Masked image Image



Pixel-by-Pixel Scan of an Image

Masked image Image



Pixel-by-Pixel Scan of an Image

Masked image Image



Poll Time!
What would you expect the dimensions of a vector representing a 2x3 
image to be?
A. 2x3
B. 3x2
C. 6x1
D. 5x1

To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do 
we need to do?
A. 4
B. 8
C. 16
D. 32



Poll Time!
What would you expect the dimensions of a vector representing a 2x3 
image to be?
A. 2x3
B. 3x2
C. 6x1
D. 5x1

To read all the pixels of a 4x4 image, how many pixel-by-pixel scans do 
we need to do?
A. 4
B. 8
C. 16
D. 32



Representing our Masks in Python

Imaging Mask 0
0 1 2 3 4

0
1

2
3

4

1, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

[

[

[

[

[

],

],

],

],

]]
)

np.array([

mask0 = 



Representing our Masks in Python

Imaging Mask 1
0 1 2 3 4

0
1

2
3

4

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

[

[

[

[

[

],

],

],

],

]]
)

np.array([

mask1 = 



Turning the Masks Into Vectors

1, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

[[

[

[

[

[

],

],

],

],

]]

mask0 = 

1

0

0

0

0

0

⁞

Row 0

Row 1

Row 2

Row 3

Row 4

Row 24

T5x5 mask to 25x1 vector



Turning the Masks Into Vectors

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

[[

[

[

[

[

],

],

],

],

]]

mask1 = 

0

1

0

0

0

0

⁞

Row 0

Row 1

Row 2

Row 3

Row 4

Row 24

T



Generating the Masking Matrix from the Masks

1, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask0 



Generating the Masking Matrix from the Masks

1, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask0 

1

0

0

0

0

0
⁞



Generating the Masking Matrix from the Masks

1, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask0 

1

0

0

0

0

0
⁞

1 0 0 0 0 0 0 0 ...



Generating the Masking Matrix from the Masks

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask1 

1 0 0 0 0 0 0 0 ...



Generating the Masking Matrix from the Masks

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask1 

0

1

0

0

0

0
⁞

1 0 0 0 0 0 0 0 ...



Generating the Masking Matrix from the Masks

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

mask1 

0

1

0

0

0

0
⁞

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...



Generating the Masking Matrix from the Masks

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...



Generating the Masking Matrix from the Masks

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...



Generating the Masking Matrix from the Masks

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

H =

← each row is a mask

↓ each column represents a pixel



Measuring a Pixel is Matrix-Vector Multiplication

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

i1

i2

i3

in

Masking Matrix H Unknown, 
vectorized 
image, 

=

s1

s2

s3

sn

Recorded 
Sensor 
readings, 



Measuring a Pixel is Matrix-Vector Multiplication

● We know H and we have the sensor readings, 
how do we get the image?

● How do we solve this?
● When can we solve this?

○ Conditions on H



Poll Time!

Select all of the following that must be true for the 
image vector i to be recoverable from the sensor 
vector s.
1. H must be invertible
2. H must have linearly independent rows
3. H must be a square matrix
4. H must be the identity matrix



Poll Time!

Select all of the following that must be true for the 
image vector i to be recoverable from the sensor 
vector s.
1. H must be invertible
2. H must have linearly independent rows
3. H must be a square matrix
4. H must be the identity matrix



Poll Time!

Select all of the following that describe the 
relationship between H (the masking matrix), s (the 
sensor vector), and i (the image vector)?
1. Hs = i
2. Hi = s
3. H-1i = s
4. H-1s = i
5. i * s = H



Poll Time!

Select all of the following that describe the 
relationship between H (the masking matrix), s (the 
sensor vector), and i (the image vector)?
1. Hs = i
2. Hi = s
3. H-1i = s
4. H-1s = i
5. i * s = H



How Scanning Works: iPython

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

H =



How Scanning Works: iPython

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

H =

0

1

0

0

0

0
⁞



How Scanning Works: iPython

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

H =

0

1

0

0

0

0
⁞

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0



How Scanning Works in Python

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

...

H =

0

1

0

0

0

0
⁞

0, 1, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0



What Makes a Mask Good?

● Linearly independent columns → Invertible
○ Can’t get a solution without this
○ There is a unique solution

● What would be a bad mask?
● Food for thought: Are all invertible matrices 

equally as good? 
○ Find out in Imaging 3 next week



Setup
Power strip to 
power your 
projector



Sample Images



Setup

1. Draw a “simple” image 
2. Use Python to project masks onto it in a dark 

environment
3. Measure ambient light sensor reading to get s
4. Multiply by H inverse to find i (= H-1s) 



Color Imaging!
● The masks we have been using so far have been black and 

white (1s and 0s). Thus, B&W images
● What if we use color masks instead? 
● Make use of RGB (red green blue) channels and reconstruct 

three different scans
● Same system as before: 
● Only difference is one “system” for each color
● With a bit of math/signal processing, we can get color 

images!



Tips for a Good Image

● READ CLOSELY. There are many small directions 
that help you get a good setup

● Focus projector using dial on the side
● Close the box firmly & scan under dark 

conditions
● Make sure the cables are plugged in, and do not 

disturb them during the scanning process



Debugging
1. Make sure wires/resistors/light sensor 

are not loose
2. Light sensor orientation: short leg 

goes into +ve
3. Check COM Port
4. Reupload code to Arduino after 

making any change in circuit
5. Check Baud Rate in Serial Monitor 

(115200)
6. Projector might randomly restart in 

the middle of the lab. Make sure 
brightness 0 contrast 100.

7. If you see a very bright corner in the 
scan, move the light sensor away from 
the projector


